West Nile virus testing 'the big picture'

William K. Reisen

Panel: Stacy Bearden, Steve Schutz and

Jerry Davis

Talk Content

- □ Review state testing effort
 - Mosquito pools
 - Dead birds
 - Sentinel chickens
- □ Comparisons among viral assays
 - Proficiency panel results
 - Antigen vs RNA: differences in sensitivity
 - Field comparison: Turlock MAD 2006
 - Impact on time to virus detection and estimates of the MIR
- ☐ Is our surveillance program too specific?
 - Review of viruses found in California
 - Likely candidates for importation where and why?
 - Suggested expansion of surveillance program
- Recommendations

Summary of mosquito, dead bird and sentinel chicken testing by CVEC, VRDL and local agencies

	RT-PCR							
	CVEC			Other				
	WEEV	WNV	Tested	WEEV	WNV	Tested		
Mosquito pools	19	665	15,652	0	104	6,210		
Dead birds	nd	820	3,453	nd	2	5		
	VecTest				RAMP			
	WEEV	WNV	Tested	WEEV	WNV	Tested		
Mosquito pools	nd	2	10	nd	89	3,716		
Dead birds	nd	469	822	nd	172	290		
	VRDL				104 6,210 2 5 RAMP WNV Tested 89 3,716 172 290 Other			
	WEEV	Flavi	Tested	WEEV	Flavi	Tested		
Sentinel chickens	28	2,189	24,489	0	242	3,114		

Based on data downloaded from the Surveillance Gateway, 15 Nov 06

Proficiency panel: CVEC results

1: CVEC RESULTS	Vial number and Test Results						
Test type	7	1	3	5	6	4	2
log ₁₀ PFU/0.1 mL*	0	1	2	3	4	5	6
VecTest [scored by 2 people]	0	0	0	0	1	2	3
RAMP [units]	0	0	0	27.8	276.2	640	640
RT-PCR [TaqMan Ct values]**	>40	36.9	33.3	30	26.7	20.6	15.5
RT-PCR [TaqMan Ct values]***	>40	>40	34.9	30.2	26.8	21.1	16.12

^{*}Original virus dilution; virus inactivated by 0.5% Triton X-100 overnight incubation in 4°C

Regression of virus titer [log10 PFU/0.1 ml as a function of real time RT-PCR Ct score

^{**}QIAmp viral RNA kit, ABI 7900 TaqMan singlex for WNV

^{***}QIAmp viral RNA kit, ABI 7900 TaqMan multiplex for WNV, WEEV, SLEV

Proficiency panel: local agency results

2: VecTest [n = 11 agencies]	7	1	3	5	6	4	2
log ₁₀ PFU/0.1 mL*	0	1	2	3	4	5	6
Mean	0.0	0.0	0.0	0.0	0.9	2.1	3.0
Max	0.0	0.0	0.5	0.0	2.0	3.0	3.0
Min	0.0	0.0	0.0	0.0	0.5	1.5	3.0
3: RAMP [n = 9 agencies]	7	1	3	5	6	4	2
log ₁₀ PFU/0.1 mL*	0	1	2	3	4	5	6
Mean	0.0	0.0	1.0	39.6	376.7	640.0	640.0
Max	0.0	0.0	3.2	64.2	640.0	640.0	640.0
Min	0.0	0.0	0.0	18.0	219.6	640.0	640.0
	_						
4:RT-PCR [n = 6]	7	1	3	5	6	4	2
log ₁₀ PFU/0.1 mL*	0	1	2	3	4	5	6
Mean	40.0	39.2	38.6	36.0	32.8	29.3	22.3
Max	40.0	40.0	40.0	40.0	40.0	33.8	25.9
Min	40.0	35.3	32.9	30.4	26.1	23.7	18.4

Problem results

Proficiency panel results: RT-PCR results among local agencies

Operational comparison with Turlock MAD, 2006: all pools tested by RAMP and RT-PCR

Change in MIR when pools are tested by RT-PCR vs. RAMP: *Cx. pipiens* data from Turlock MAD, 2006

Max-Min and Avg air temperature at Davis, CA, 2006

Impact of sensitivity on time of detection after infection:

Quantity of WNV in \log_{10} PFU in *Cx. tarsalis* females plotted as a function of days when held at 5 temperatures. Shown as horizontal lines are limits for virus detection by VecTest, RAMP and RT-PCR assays [based on current proficiency panels].

Summary

- □ Proficiency panel results were specific, accurate, and consistent among agencies, but tests varied in sensitivity.
- □ Thresholds for WNV detection were >100 PFU for multiplex RT-PCR, >10,000 PFU for the RAMP, and >100,000 PFU for the VecTest.
- □ RT-PCR results were most variable among agencies probably due to differences in chemistry and detection systems.
- □ Field comparison of RAMP to RT-PCR showed a 38% loss in positive pools
- \square Decrease in positive pools = decrease in MIR/1,000
- □ Cool weather slows virus growth within infected mosquitoes and delays detection by less sensitive assays

Talk Content

- □ Review state testing effort
 - Mosquito pools
 - Dead birds
 - Sentinel chickens
- □ Comparisons among viral assays
 - Proficiency panel results
 - Antigen vs RNA: differences in sensitivity
 - Field comparisons: Turlock MAD 2006
 - Impact on time to virus detection and estimates of the MLE
- □ Is our surveillance program too specific?
 - Review of viruses found in California
 - Likely candidates for importation where and why?
 - Suggested expansion of surveillance program
- □ Recommendations

Mosquito-borne viruses found in California

Virus	Vector	Reservoir		
Alphavirus				
Western equine encephalitis	Cx. tarsalis, Ae. melanimon	Birds, rabbits		
Flavivirus				
St. Louis encephalitis	Cx. tarsalis, Cx. quinquefasciatus	Birds [nestlings?]		
West Nile virus	Cx. tarsalis, Cx. pipiens complex	Birds [Passeriforms]		
Bunyaviruses				
California encephalitis	Ae. dorsalis complex	Rabbits		
Morro Bay	Ae. squamiger	Rabbits?		
Jamestown canyon	Cs. inornata, Aedes	Rabbits, deer		
[Jerry Slough]	Cs. inornata	Rabbits?		
Northway-like	Cs. inornata, Anopheles?	Rabbits		
Turlock	Cx. tarsalis	Birds		
Rhabdovirus				
Hart Park	Cx. tarsalis	Birds?		
Gray Lodge	Cx. tarsalis	??		
Orbivirus				
Llano Seco	Cx. tarsalis	??		

Red = human illness

Some viruses 'on the move' that could invade California

Virus	Vector	Reservoir	Distribution
Dengue Fever Japanese encephaltiis	Aedes aegypti, Ae. albopcitus Culex tarsalis	Humans, <i>Aedes</i> TOT Birds, swine, TOT	Asia, Tropical America Asia
Ross River Chikungunya Venezuelan equine	Aedes dorsalis or vexans? Aedes aegypti, Ae. albopcitus	Humans, <i>Ae. vigilax</i> TOT Humans?	Australia Africa, India
encephalomyelitis	Psorophora, Aedes, Culex	Rodents, Horses	Tropical America
Rift Valley Fever	Culex, Aedes	Aedes TOT, Humans	Australia

Recommendation: expand surveillance program to capture endemic and new viruses using cell culture

Proposed testing paradigm

Aliquot added to Vero cells at several dilutions to check for CPE and virus detection

RNA extraction and real time RT-PCR with high through put and rapid turn-around-time

Recommendations

- □ Establish a fixed sampling grid with registered sites at each district to monitor abundance and infection
- □ Test mosquitoes from permanent grid by RT-PCR to provide early warning and detection of WEEV and SLEV as well as WNV
- □ Test mosquitoes from points of entry into California using tissue to culture to capture emerging viruses
- Restrict RAMP testing of mosquitoes from 'roving sites' to hot summer months to provide quick results for operational decision making
- □ Restrict RAMP/VecTest testing to American crows